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Abstract  

We present the general features of a bispinor field that obeys a third-order equation. It 
separates into two massive fields that obey the Dirac equation and a four-component 
massless field. We discuss briefly its electromagnetic interactions and a leptonic inter- 
action that introduces a mass difference. This field can thus describe the electron, the 
muon and both neutrinos. The difficulties related to inconsistencies between electro- 
magnetic and weak interactions for the two-component spinors are still present for the 
bispinor field. 

1. Introduction 

Recent changes in our understanding of leptons and weak interactions make 
an examination of the tess common wave equations worthwhile. 

In a previous paper (Marx, 1974), we worked with a third-order equation 
tbr two-component spinors. We now do a similar study of the corresponding 
equation for bispinors, mentioned before by Kibble & Polkinghorne (1958) 
more or less in passing. This equation has the right number of degrees of 
freedom to accommodate the electron, the muon and the two neutrinos. The 
basic equation has a single mass parameter, but  it is a simple matter to change 
it to include two different masses. 

When the interaction with the electromagnetic field is introduced via the 
usual gauge-invariant substitution, the massless field appears to be charged. 
Nevertheless, since its 'charge' is separately conserved, this is not  an insur- 
mountable objection. As far as weak interactions are concerned, the number 
of possible interaction Lagrangian densities that can be constructed from the 
field and its first and second derivatives is quite large. We limit ourselves to 
developing in some detail a two-fermion pseudoscalar term that leads to the 
splitting of the masses, which can be regarded either as an interaction or as a 
change in the free-field equation. 

We study the free-field equation in Section 2, and introduce electromagnetic 
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and leptonic interactions in Sections 3 and 4 respectively, plus some concluding 
remarks in Section 5. 

We use natural units and a time-favoring metric in a real Minkowski space; 
the notation used here follows closely that in Marx (1974) and some earlier 
papers mentioned there. 

2. The Free Field 

We use as a starting point a Lagrangian density analogous to the one in 
Marx (1974), 

~ 0 = 1 .  - -  _ - -  ( ~[ (~ ,~%~%7~ ,~ .  ~,~.V~v.V~qJ,~)lm 2 

- ~ V ~ , c ~  + ~ ,c~Taff]  ( 2 . 1 )  

which yields the third-order equation of motion 

- / 3 "  3(02 + m2)~ = 0 (2.2) 

and the conserved current and energy-momentum densities 

t .  = :~[( , .v~¢,~ - ~ ' .¢ ,~,~ ~ v ~ , ~ . ) / m  2 

- ~ ' ) ' . ~ ]  + c .c .  ( 2 . 3 )  

T; .  = ½ i [ ~ , d v . ~ , ~  + m~v.~t, + V~¢,~.)/m 2 

- ~,,v'Yc~th,cdm z ] + c . c . -  ~ o g ,  v (2.4) 

where c.c. stands for the complex conjugate of the preceding term. 
FoUowing procedures used before (Marx, 1967, 1974), we decompose the 

field ff into three parts 

f f=r /+~+~"  (2.5) 

defined by the projections in the space of solutions of equation (2.2), 

r/= (1 + 32/rnZ)~ (2.6) 

= (1 /2m2) ( imv  • ~ - 32)~  (2,7) 

= (1/2mZX - imv"  3 - 32 )~  (2.8) 

These fields then satisfy 

--  iv" 37/= 0 ( 2 . 9 )  

( -  iv. ~ + m)~ = o (2.1o) 

( - - /7-3  - rn)~- = 0 (2.11) 
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To separate the contributions from the different fields, we add a term 
fe#,a to/~ wheret 

We obtain 
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f~u  = - ( i / 2 m 2 ) ~ % u Y ~ ¢ , ~  + c . c .  (2.12) 

(2.13) 

]u = 2(~-7u~ + ~'Yuf) - ~Tu~ (2 .14)  

and we note that the contribution from the fields } and f have the same sign, 
which was not the case in Marx (1967). 

Similarly, we add a termfauv, ~ to T£v, where 

f~uv = - (1/2m2)~,voc~uTe~ ,[3 

- ½i~-(guv%~ -- go~v3'.)(~ + ~) + c.c. (2.15) 

and obtain 

- ~-,uTuf) - (~'ur~,v - ~,u~/ur/)] (2.16) 

The solutions to equations (2.9) through (2.11) can be expanded in terms 
of momentum-space amplitudes, 

= (2~r) -3/2 fd3kuox(k)[ax(k) exp ( -  ik .x) 

+ cx(k ) exp (ik. x)l (2.17) 

} = (27r) -a/2 ~ d3p(m/2E) 1/2 [ux(p)b~,(p ) exp ( -  ip .x)  

+ vx(p)dx(p) exp (ip. x)] (2.18) 

~- = (2rr) -3/2 f dap(m/2E) 1/2 [vx(p)fx(p) exp ( -  ip. x) 

+ vx(p)gx(p) exp (ip. x)] (2.19) 

where u x and vx, collectively designated by wx, are given by 

wx(p) = [(E + m)/2m] 1/2 [1 + ~ "p/(E + m)] w(x°)(/3) (2.20) 

× ) ' 

the Xx being the two-component helicity states and 

Uox(k) = 2-1/2(1 + ~" ]¢)u(a°)(k) (2.22) 

E =Po = (p2 + m2)1/2 (2.23) 

ko = Ikl (2.24) 

-~ The definition of ac~ p in Marx (1967) differs from the present one by an overall 
change of sign. 
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The total 'charge' can then be expressed as 

Q = f d3p[b~bx + d~dx + 3~fx + g{gx] 

-- f d3k [a~ax + c~c x] (2.25) 

and the energy-momentum vector is 

Pu = f d3ppu [b~bx - d~d x + f*xfh ~g - g x  x] 

- ~ d3kku [a~ax -- c~cx] (2.26) 

The fields ~ and ~ represent spin-½ particles of mass m which play effectively 
the same role in spite of the different signs of the mass in equations (2.10) 
and (2.11). The field ~ represents a massless spin-½ particle, and both helicities 
are present, whence it can describe the two types of neutrinos and the cor- 
responding antineutrinos. 

In a quantization we have to decide whether d x and gx are annihilation 
operators, as in Marx (1972), or whether they are creation operators, which 
is the usual choice. In the latter case, normal ordering changes the signs of the 
corresponding terms in the expressions (2.25) and (2.26) for Q and Pu" 

A different separation of the field ~ into component fields can be performed 
by going back to two-component spinors. The upper and lower components of 

in the third-order equation (2.2) are uncoupled, and they obey the equations 
presented in Marx (1974), 

i~BA (~ 2 + m2)~OA = 0 (2.27) 

i3~B(O 2 + mZ)x d = 0 (2.28) 

In any case, the number of degrees of freedom present in the field ¢ is the 
right one to describe all leptons. 

3. Electromagnetic Interactions 

These interactions can be introduced by the usual gauge-invariant substitu- 
tion 

~u -~ Du = 3u - ieAu (3.1) 

so that the Lagrangian density becomes 

~ =  1 - * - -  

- (DZD*~)7o~Tu3,~D~]/m 2 

- ~3"aDa~ + ( D ~ ) T a ¢ )  (3.2) 

The resulting equation of motion is 

/3' "0[(3' "9) 2 + m 2 ] ~ = 0 (3.3) 
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and the solutions can still be decomposed as in equation (2.5) into parts that 
satisfy 

- iv .D~ = 0 (3.4) 

( -  iT-D + m)~ = 0 (3.5) 

( -  i7 "D - m)~ = 0 (3.6) 

As was the case in Marx (1974), the massless part of the field appears to be 
charged, a consequence of the gauge covariance of ft. The precise behavior of  
a massless charged field remains to be investigated. The three terms in the 
current density (2.14) are separately conserved even in the presence of electro- 
magnetic interactions, because the fields obey the uncoupled equations (3.4) 
to (3.6). 

We have some further remarks on the electromagnetic interactions at the 
end of the following section. 

4. Lepton Interactions 

If we want to construct an interaction Lagrangian from the field and its 
first and second derivatives we are faced with a choice among a large number 
of terms that can be used singly or in combination. 

An obvious candidate for weak interactions is the four-fermion point 
coupling, 

~ga) = G~Tu(t + iVs)¢~%,(1 + iTs)~ (4.1) 

which contains the usual terms plus some additional ones. 
On the other hand, to construct a theory that describes actual leptons we 

have to introduce the mass difference between the electron and the muon. It  is 
possible to treat this through an added interaction Lagrangian density, which 
can also be made a part of ~gao, of course. 

For this purpose, we choose a pseudoscalar quantity, as suggested by the 
parity non-conservation of weak interactions. 

& = ½g(~vsVu~,,, + ~,~VuVs ~) (4.2) 

The new equation of motion is 

--/'7" 0( 02 + m2)~ = -- gm27sV "a.~ (4.3) 

which can be rewritten as 

- i v  a [ a  2 + m 2 ( 1  - i g v s ) l  = 0 (4.4) 
In the representation of the Vu that arises naturally when the starting point is 
two-component spinors (Marx, 1974), we have 
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where each element represents a 2 x 2 matrix, a multiple of either the zero or 
unit matrix. Thus, the upper and lower components of ¢ obey equations 
(2.27) and (228) with masses 

m' = m(1 +g)1/2 (4.6) 

m" = m(1 - g)1/2 (4.7) 

respectively. 
A different way of approaching this 'interaction' comes from the decom- 

position of the field ¢ indicated in equations (2.5) through (2.8). The fields 
now obey 

( - / 7 "  8 + m)~ = ½gTs2t" 8¢ (4.8) 

( -  i7" 8 - m)f  = ½g3'87" 8tf/ (4.9) 

- i7 "87 = - g 7 8 7 - 0 ¢  (4.10) 

which can be rewritten as 

- iT . SA,.I~ + m B ~  = O 

where 

The new set of fields 

obeys 

where 

{1 + ½igTs 
A =~½igTs 

\ -  igT s 

(4.11) 

½ig?s ½igvs \ 
l+½igTs ½igTs / (4.12) 

! 

- i g ~ , 5  1 - i g ' r s /  

B = diag ( / , - I ,  0) (4.13) 

= (~, f ,  r/) (4.14) 

• ' = A q ,  (4.15) 

( -  iF" 8 + mB')~ '  = 0 (4.16) 

P = diag (3', 7, 7) (4.17) 

The solutions of the set of linear equations (4.16) can be expressed in terms 
of plane waves 

~I/(x) =/l?(p) exp ( -  ip. x) (4.19) 
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whence q5 satisfies 

( -  P " p + mB')q~ = 0 
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(4.20) 

which has non-trivial solutions when the secular equation 

det ( -  P - p + roB') = 0 (4.21) 

is satisfied. This equation reduces to 

{p2 [p2 _ m2(1 +g)] [p2 _ m2(1 _g)]  }z = 0 (4.22) 

confirming the expected mass spectrum with masses 0, m' and m". 
The field 7' is a free massless field, while ~' and ~" are coupled to each other 

and to 7'. When r~' vanishes the linear combinations of ~' and f '  that corre- 
spond to masses m' and m" are proportional to 

[(1 + ir'ys)u~t(p) ~ (4.23) 
< ( P )  = k ( -  r' - iTs)U'~(p)] 

[ ( - r '  - iTs)V~,(p) ) (4.24) 
~'-(P) = ~(1 + ir'3,s)V•(p) 

i(1 
q)"(P) = \(r" + iTs)u[(p) ] (4.25) 

t l  . ~  . rl 

[(r tys)vx(P) ~ (4.26) ~ " ( p )  = + . . . . .  
k(1 ,r 7 s )vx (p ) ]  

where 
r/q t - -  r / /  m - -  m "  

- -  r" ( 4 . 2 7 )  r' = , , = ,-----7 
m + m  m + m  

! r !  I f  , . ~ t t  

and u~t, v~,, u x and v~, are given by equaUon (2.20) with masses m and m . 

If we introduce an electromagnetic interaction through a modification of 
equation (4.16), 

( -  iF "D + rnB')xI/(x)  = 0 (4.28) 

the massless field 7' still obeys the uncoupled equation (3.4). Or we can start 
again from the Lagrangian density (3.2) adding the corresponding terms from 
that in equation (4.2), that is, 

54~ = ½g[~TsT~Duqa + (D*~)~/u~/5 ~] (4.29) 

leading to 

-- iT "D[(T "D) 2 + m2(1 - igYs)l ~ = 0 (4.30) 

and we can proceed from here to equation (4.28). 
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5. Concluding Remarks 

This bispinor field we have presented has the attractive feature that it 
describes simultaneously two massive fermion fields that obey the Dirac 
equation and a massless one, thus having the right number of degrees of free- 
dom for all leptons~ We have also shown how the mass difference between the 
electron and the muon can be introduced through a pseudoscalar interaction 
term. The electromagnetic interactions present the difficulty of having the 
massless field appear charged, and it is not readily compatible with more 
complicated lepton interactions. 

This field can be used either in the context of  relativistic quantum mechanics 
or of quantum theory of fields. In the latter case, the propagator will give much 
better convergence of the terms in a perturbation expansion than the Dirac 
field. 

We have not explored the many other possible interaction terms both 
leptonic and with the electromagnetic field. This can be done in case there are 
further indications that such a common lepton field is desirable. 
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